

Large Area Telescope (LAT) Overview

Peter F. Michelson
Instrument Principal Investigator
Stanford University
peterm@leland.stanford.edu

William E. Althouse

LAT Project Manager Stanford Linear Accelerator Center wea@slac.stanford.edu

GLAST Large Area Telescope: Overview

- LAT: wide field-of-view high-energy gamma-ray telescope
- Design optimized for Key Science Objectives
 - Particle acceleration in Pulsars, SNRs, AGN, & galaxies
 - High-energy behavior of GRBs & Transients
 - Probe dark matter and the Early Universe
- More than 7 years of design, development & demonstration efforts
 - 1993-95: First GLAST mission studies as New Mission Concept in Astrophysics
 - 1997-2000: LAT Technology Development and Demonstration Program
- LAT design based on proven technologies
 - Precision Si-strip Tracker
 - Hodoscopic CsI Calorimeter
 - Segmented Anticoincidence Detector
 - Advantages of modular design

GLAST Large Area Telescope: Overview

- GLAST LAT flight instrument and science investigation proposal submitted in response to NASA AO 99-OSS-03 November 1999
 - Baseline instrument configuration defined
 - Instrument team defined: US led (supported by DOE & NASA), with international partners
 - Draft international agreements with all foreign partners
- Flight Proposal selected February 28, 2000

Organizations with LAT Hardware Involvement

Stanford University: SLAC & HEPL

NASA Goddard Space Flight Center

US Naval Research Laboratory

University of California at Santa Cruz: SCIPP

Hiroshima University, University of Tokyo, ISAS & ICRR,

Japan

INFN, Italy

Laboratorie du Commissariat a l'Energie Atomique &

IN2P3, France

Royal Institute of Technology, Sweden

Experimental Technique

- Instrument must measure the <u>direction</u>, <u>energy</u>, and <u>arrival time</u> of high energy photons (from approximately 20 MeV to greater than 300 GeV):
 - photon interactions with matter in GLAST energy range dominated by pair conversion:
 - determine photon direction
 - clear signature for background rejection
 - limitations on angular resolution (PSF)

low E: multiple scattering => many thin layers
high E: hit precision & lever arm

Energy loss mechanisms:

Fig. 2: Photon cross-section σ in lead as a function of photon energy. The intensity of photons can be expressed as $1 = I_0 \exp(-\sigma x)$, where x is the path length in radiation lengths. (Review of Particle Properties, April 1980 edition).

- must detect γ -rays with high efficiency and reject the much higher flux ($x\sim10^4$) of background cosmic-rays, etc.;
- energy resolution requires calorimeter of sufficient depth to measure buildup of the EM shower. Segmentation useful for resolution and background rejection.

LAT Instrument

Instrument

16 towers \Rightarrow modularity height/width = 0.4 \Rightarrow large field-of-view

TKR

Si-strips: fine pitch: 228 μm, high efficiency

 $0.44 X_0$ front-end \Rightarrow reduce multiple scattering

1.05 X_0 back-end \Rightarrow increase sensitivity > 1 GeV

CAL

CsI: wide energy range 0.1-100 GeV

hodoscopic ⇒ cosmic-ray rejection

⇒ shower leakage correction

 $X_{TOT} = 10.1 X_0 \Rightarrow \text{shower max contained} < 100 \text{ GeV}$

ACD

segmented plastic scintillator

 \Rightarrow minimize self-veto

> 0.9997 efficiency & redundant readout

TKR+CAL:

prototypes + 1 engineering model 16 flight +1(qual→spare) +1(spare)

ACD:

1(qual) +1 flight

Pair-Conversion Tracker Design Considerations

LAT Instrument Performance

80

102

More than 40 times the sensitivity of **EGRET**

Large Effective Area (20 MeV - > 300 GeV

Optimized Point Spread Function (0.35° @ 1 GeV)

Wide Field of View (2.4 sr)

Good Energy Resolution $(\Delta E/E < 10\%,$ E > 100 MeV

GLAST LAT Organization

Institutions & Responsibilities

Institution(s)	Areas of Responsibility
SU-SLAC	Management of GLAST LAT project Instrument systems engineering, electrical systems engineering Tracker subsystem mechanical design, construction, testing, integration Software management, Grid development, Instrument integration and test Level-1 data processing, Performance and Safety Assurance DAQ engineering support
SU-HEPL	DAQ Subsystem development; Inst. Ops. Ctr.
SSU	Education and Public Outreach Program
GSFC	ACD Subsystem; thermal blanket/ micrometeorite shield; Instrument Scientist
NRL	DAQ/CPU, DAQ/DSF, S/C Interface Unit; calorimeter digital electronics; calorimeter integration and test
FRANCE - CEA/DAPNIA IN2P3/France	Calorimeter analog front-end photo-diodes and electronics readout; management of French effort Calorimeter module mechanical design and assembly; calorimeter & inst. simulation
KTH, Stockholm University	Calorimeter CsI crystals
UCSC	Tracker Subsystem: electronics, mechanical design, assembly, testing
JGC, Japan	Tracker: Silicon-strip detectors
INFN, Italy	Tracker: Silicon-strip ladders and tracker tray assembly

GLAST LAT Schedule

